Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Indian J Pathol Microbiol ; 2016 July-Sept 59(3): 310-313
Article in English | IMSEAR | ID: sea-179557

ABSTRACT

Background: CD71 is a marker that has been usually used for identifying dysplasia in the erythroid series. We have tried to evaluate the expression of CD71 in various types of acute leukemias. Materials and Methods: We studied 48 patients of acute leukemia, of which 25 were acute myeloid leukemia (AML), 13 were precursor B‑acute lymphoblastic leukemia (B‑ALL), 8 were T‑ALL, and 2 were mixed phenotype acute leukemia (T/myeloid) as per the WHO classification. Results: We found that the expression of CD71 was most prevalent in AMLs (84%), followed by T‑ALL (50%) and least in B‑ALL (30%). Conclusion: This finding clearly shows the higher expression of CD71 in AMLs compared to other common type of leukemias, such as B‑ and T‑ALL. We suggest that the high expression of CD71 in AMLs could be used as a diagnostic marker and may also be used for minimal residual disease analysis after further studies in posttreatment scenario. This study is the first of its kind in the South Asian population.

2.
Indian J Biochem Biophys ; 2011 Apr; 48(2): 73-81
Article in English | IMSEAR | ID: sea-135303

ABSTRACT

Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear receptor superfamily. PPAR-alpha is involved in wound healing, stimulation of lipid and folic acid catabolism, inflammation control, inhibition of ureagenesis and peroxisome proliferation. The PPAR/ is involved wound healing, cell proliferation, embryo implantation, adipocyte differentiation, myelination alteration and apoptosis. The PPAR is involved in fat, lipid and calorie utilization, sugar control, inflammation control and macrophage (MQ) matutation. Homocysteine (Hcy) binds to nuclear peroxisome proliferator activated receptor. Increase in PPAR expression decreases the level of nitrotyrosine and increases endothelial nitric oxide concentration, decreases metalloproteinase activity and expression as well as elastinolysis and reverses Hcy-mediated vascular dysfunction. The PPAR initially recognized as a regulator of adipocyte development has become a potential therapeutic target for the treatment of diverse disorders. In addition, the activation of PPAR receptor ameliorates neurodegenerative disease. This review focuses on the recent knowledge of PPAR in neuroprotection and deals with the mechanism of neuroprotection of central nervous system disorder by PPAR.


Subject(s)
Animals , Brain Ischemia/metabolism , Brain Ischemia/pathology , Brain Ischemia/therapy , Cell Death , Central Nervous System/cytology , Central Nervous System/metabolism , Central Nervous System/pathology , Cytoprotection , Humans , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/therapy , Neurons/cytology , Neurons/pathology , Neuroprotective Agents/metabolism , PPAR gamma/metabolism
3.
Indian J Biochem Biophys ; 2009 Dec; 46(6): 441-446
Article in English | IMSEAR | ID: sea-135227

ABSTRACT

Mitochondrial mechanism of oxidative stress and matrix metalloproteinase (MMP) activation was unclear. Our recent data suggested that MMPs are localized to mitochondria and activated by peroxynitrite, which causes cardiovascular remodeling and failure. Recently, we have demonstrated that elevated levels of homocysteine (Hcy), known as hyperhomocysteinemia (HHcy) increase oxidative stress in the mitochondria. Although HHcy causes heart failure, interestingly, it is becoming very clear that Hcy can generate hydrogen sulfide (H2S), if the enzymes cystathionine β-synthase (CBS) and cystathionine -lyase (CGL) are present. H2S is a strong anti-oxidant and vasorelaxing agent. Paradoxically, it is interesting that Hcy, a precursor of H2S can be cardioprotective. The CGL is ubiquitous, while the CBS is not present in the vascular tissues. Therefore, under normal condition, only half of Hcy can be converted to H2S. However, there is strong potential for gene therapy of CBS to vascular tissue that can mitigate the detrimental effects of Hcy by converting it to H2S. This scenario is possible, if the activities of both the enzymes (CBS and CGL) are increased in tissues by gene therapy.


Subject(s)
Animals , Gene Deletion , Heart Failure/genetics , Heart Failure/metabolism , Heart Failure/physiopathology , Homocysteine/metabolism , Humans , Hydrogen Sulfide/metabolism , Myocardial Contraction , Receptors, N-Methyl-D-Aspartate/deficiency , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL